Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Environ Sci Pollut Res Int ; 31(5): 7556-7568, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38165546

RESUMO

Indoor air pollution is a global problem and one of the main stress factors that has negative effects on plant and human health. 3-methyl-1-butanol (3MB), an indoor air pollutant, is a microbial volatile organic compound (mVOC) commonly found in damp indoor dwellings. In this study, we reported that 1 mg/L of 3MB can elicit a significant reduction in the stomatal aperture ratio in Arabidopsis and tobacco. Our results also showed that 3MB enhances the reactive oxygen species (ROS) production in guard cells of wild-type Arabidopsis after 24 h exposure. Further investigation of 24 h 3MB fumigation of rbohD, the1-1, mkk1, mkk3, and nced3 mutants revealed that ROS production, cell wall integrity, MAPK kinases cascade, and phytohormone abscisic acid are all involved in the process of 3MB-induced stomatal. Our findings proposed a mechanism by which 3MB regulates stomatal closure in Arabidopsis. Understanding the mechanisms by which microbial indoor air pollutant induces stomatal closure is critical for modulating the intake of harmful gases from indoor environments into leaves. Investigations into how stomata respond to the indoor mVOC 3MB will shed light on the plant's "self-defense" system responding to indoor air pollution.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Pentanóis , Humanos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estômatos de Plantas , Transdução de Sinais , Ácido Abscísico/metabolismo
3.
Plant Mol Biol ; 113(4-5): 143-155, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37985583

RESUMO

Microbial volatile compounds (mVCs) may cause stomatal closure to limit pathogen invasion as part of plant innate immune response. However, the mechanisms of mVC-induced stomatal closure remain unclear. In this study, we co-cultured Enterobacter aerogenes with Arabidopsis (Arabidopsis thaliana) seedlings without direct contact to initiate stomatal closure. Experiments using the reactive oxygen species (ROS)-sensitive fluorescent dye, H2DCF-DA, showed that mVCs from E. aerogenes enhanced ROS production in guard cells of wild-type plants. The involvement of ROS in stomatal closure was then demonstrated in an ROS production mutant (rbohD). In addition, we identified two stages of signal transduction during E. aerogenes VC-induced stomatal closure by comparing the response of wild-type Arabidopsis with a panel of mutants. In the early stage (3 h exposure), E. aerogenes VCs induced stomatal closure in wild-type and receptor-like kinase THESEUS1 mutant (the1-1) but not in rbohD, plant hormone-related mutants (nced3, erf4, jar1-1), or MAPK kinase mutants (mkk1 and mkk3). However, in the late stage (24 h exposure), E. aerogenes VCs induced stomatal closure in wild-type and rbohD but not in nced3, erf4, jar1-1, the1-1, mkk1 or mkk3. Taken together, our results suggest that E. aerogenes mVC-induced plant immune responses modulate stomatal closure in Arabidopsis by a multi-phase mechanism.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Ácido Abscísico/farmacologia , Espécies Reativas de Oxigênio , Estômatos de Plantas/fisiologia
4.
J Exp Bot ; 72(15): 5442-5461, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-33963755

RESUMO

Orchid gynostemium, the fused organ of the androecium and gynoecium, and ovule development are unique developmental processes. Two DROOPING LEAF/CRABS CLAW (DL/CRC) genes, PeDL1 and PeDL2, were identified from the Phalaenopsis orchid genome and functionally characterized. Phylogenetic analysis indicated that the most recent common ancestor of orchids contained the duplicated DL/CRC-like genes. Temporal and spatial expression analysis indicated that PeDL genes are specifically expressed in the gynostemium and at the early stages of ovule development. Both PeDLs could partially complement an Arabidopsis crc-1 mutant. Virus-induced gene silencing (VIGS) of PeDL1 and PeDL2 affected the number of protuberant ovule initials differentiated from the placenta. Transient overexpression of PeDL1 in Phalaenopsis orchids caused abnormal development of ovule and stigmatic cavity of gynostemium. PeDL1, but not PeDL2, could form a heterodimer with Phalaenopsis equestris CINCINNATA 8 (PeCIN8). Paralogous retention and subsequent divergence of the gene sequences of PeDL1 and PeDL2 in P. equestris might result in the differentiation of function and protein behaviors. These results reveal that the ancestral duplicated DL/CRC-like genes play important roles in orchid reproductive organ innovation.


Assuntos
Regulação da Expressão Gênica de Plantas , Orchidaceae , Genitália/metabolismo , Orchidaceae/genética , Orchidaceae/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
5.
Ann Bot ; 125(7): 1091-1099, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32157271

RESUMO

BACKGROUND AND AIMS: Nitrate can stimulate seed germination of many plant species in the absence of light; however, the molecular mechanism of nitrate-promoted seed germination in the dark remains largely unclear and no component of this pathway has been identified yet. Here, we show that a plastid J-domain protein, DJC75/CRRJ, in arabidopsis (Arabidopsis thaliana) is important for nitrate-promoted seed germination in the dark. METHODS: The expression of DJC75 during imbibition in the dark was investigated. The seed germination rate of mutants defective in DJC75 was determined in the presence of nitrate when light cues for seed germination were eliminated by the treatment of imbibed seeds with a pulse of far-red light to inactivate phytochrome B (phyB), or by assaying germination in the dark with seeds harbouring the phyB mutation. The germination rates of mutants defective in CRRL, a J-like protein related to DJC75, and in two chloroplast Hsp70s were also measured in the presence of nitrate in darkness. KEY RESULTS: DJC75 was expressed during seed imbibition in the absence of light. Mutants defective in DJC75 showed seed germination defects in the presence of nitrate when light cues for seed germination were eliminated. Mutants defective in CRRL and in two chloroplast Hsp70s also exhibited similar seed germination defects. Upregulation of gibberellin biosynthetic gene GA3ox1 expression by nitrate in imbibed phyB mutant seeds was diminished when DJC75 was knocked out. CONCLUSIONS: Our data suggest that plastid J-domain protein DJC75 regulates nitrate-promoted seed germination in the dark by upregulation of expression of the gibberellin biosynthetic gene GA3ox1 through an unknown mechanism and that DJC75 may work in concert with chloroplast Hsp70s to regulate nitrate-promoted seed germination. DJC75 is the first pathway component identified for nitrate-promoted seed germination in the dark.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis , Cloroplastos , Regulação da Expressão Gênica de Plantas , Germinação , Sementes
6.
Plant J ; 90(5): 994-1006, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28258650

RESUMO

The chloroplast NAD(P)H dehydrogenase-like (NDH) complex consists of about 30 subunits from both the nuclear and chloroplast genomes and is ubiquitous across most land plants. In some orchids, such as Phalaenopsis equestris, Dendrobium officinale and Dendrobium catenatum, most of the 11 chloroplast genome-encoded ndh genes (cp-ndh) have been lost. Here we investigated whether functional cp-ndh genes have been completely lost in these orchids or whether they have been transferred and retained in the nuclear genome. Further, we assessed whether both cp-ndh genes and nucleus-encoded NDH-related genes can be lost, resulting in the absence of the NDH complex. Comparative analyses of the genome of Apostasia odorata, an orchid species with a complete complement of cp-ndh genes which represents the sister lineage to all other orchids, and three published orchid genome sequences for P. equestris, D. officinale and D. catenatum, which are all missing cp-ndh genes, indicated that copies of cp-ndh genes are not present in any of these four nuclear genomes. This observation suggests that the NDH complex is not necessary for some plants. Comparative genomic/transcriptomic analyses of currently available plastid genome sequences and nuclear transcriptome data showed that 47 out of 660 photoautotrophic plants and all the heterotrophic plants are missing plastid-encoded cp-ndh genes and exhibit no evidence for maintenance of a functional NDH complex. Our data indicate that the NDH complex can be lost in photoautotrophic plant species. Further, the loss of the NDH complex may increase the probability of transition from a photoautotrophic to a heterotrophic life history.


Assuntos
Genoma de Cloroplastos/genética , Genoma de Planta/genética , Orchidaceae/genética , Proteínas de Plantas/genética
7.
PLoS One ; 8(7): e70384, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23894646

RESUMO

Hsp70 chaperones are involved in multiple biological processes and are recruited to specific processes by designated J domain-containing cochaperones, or J proteins. To understand the evolution and functions of chloroplast Hsp70s and J proteins, we identified the Arabidopsis chloroplast J protein constituency using a combination of genomic and proteomic database searches and individual protein import assays. We show that Arabidopsis chloroplasts have at least 19 J proteins, the highest number of confirmed J proteins for any organelle. These 19 J proteins are classified into 11 clades, for which cyanobacteria and glaucophytes only have homologs for one clade, green algae have an additional three clades, and all the other 7 clades are specific to land plants. Each clade also possesses a clade-specific novel motif that is likely used to interact with different client proteins. Gene expression analyses indicate that most land plant-specific J proteins show highly variable expression in different tissues and are down regulated by low temperatures. These results show that duplication of chloroplast Hsp70 in land plants is accompanied by more than doubling of the number of its J protein cochaperones through adding new J proteins with novel motifs, not through duplications within existing families. These new J proteins likely recruit chloroplast Hsp70 to perform tissue specific functions related to biosynthesis rather than to stress resistance.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/classificação , Evolução Molecular , Filogenia , Arabidopsis/química , Proteínas de Arabidopsis/classificação , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Cloroplastos/química , Proteínas de Cloroplastos/classificação , Proteínas de Cloroplastos/genética , Cloroplastos/metabolismo , Sequência Conservada/genética , Cianobactérias/química , Regulação da Expressão Gênica de Plantas , Genoma de Planta/genética , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/classificação , Chaperonas Moleculares/genética , Dados de Sequência Molecular , Plantas/química , Plantas/classificação , Proteômica , Estresse Fisiológico/genética
8.
Plant Physiol ; 154(3): 1172-82, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20841453

RESUMO

Toc12 is a novel J domain-containing protein identified in pea (Pisum sativum) chloroplasts. It was shown to be an integral outer membrane protein localizing in the intermembrane space of the chloroplast envelope. Furthermore, Toc12 was shown to associate with an intermembrane space Hsp70, suggesting that Toc12 is important for protein translocation across the chloroplast envelope. Toc12 shares a high degree of sequence similarity with Arabidopsis (Arabidopsis thaliana) DnaJ-J8, which has been suggested to be a soluble protein of the chloroplast stroma. Here, we isolated genes encoding DnaJ-J8 from pea and found that Toc12 is a truncated clone of one of the pea DnaJ-J8s. Protein import analyses indicate that Toc12 and DnaJ-J8s possess a cleavable transit peptide and are localized in the stroma. Arabidopsis mutants with T-DNA insertions in the DnaJ-J8 gene show no defect in chloroplast protein import. Implications of these results in the energetics and mechanisms of chloroplast protein import are discussed.


Assuntos
Cloroplastos/genética , Proteínas de Plantas/genética , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cloroplastos/metabolismo , Genes de Plantas , Dados de Sequência Molecular , Mutagênese Insercional , Mutação , Proteínas de Plantas/metabolismo , Transporte Proteico , RNA de Plantas/genética , Receptores de Superfície Celular/genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
9.
Annu Rev Plant Biol ; 61: 157-80, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20192748

RESUMO

Most proteins in chloroplasts are encoded by the nuclear genome and synthesized as precursors with N-terminal targeting signals called transit peptides. Novel machinery has evolved to specifically import these proteins from the cytosol into chloroplasts. This machinery consists of more than a dozen components located in and around the chloroplast envelope, including a pair of GTPase receptors, a beta-barrel-type channel across the outer membrane, and an AAA(+)-type motor in the stroma. How individual components assemble into functional subcomplexes and the sequential steps of the translocation process are being mapped out. An increasing number of noncanonical import pathways, including a pathway with initial transport through the endomembrane system, is being revealed. Multiple levels of control on protein transport into chloroplasts have evolved, including the development of two receptor subfamilies, one for photosynthetic proteins and one for housekeeping proteins. The functions or expression levels of some translocon components are further adjusted according to plastid type, developmental stage, and metabolic conditions.


Assuntos
Cloroplastos/metabolismo , Plantas/metabolismo , Transporte Proteico , Núcleo Celular/genética , Núcleo Celular/metabolismo , Citosol/metabolismo , Membranas Intracelulares/metabolismo , Redes e Vias Metabólicas , Fotossíntese , Células Vegetais , Proteínas de Plantas/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo
10.
Plant J ; 56(5): 793-801, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18657235

RESUMO

Chloroplast inner-membrane proteins Tic40 and Tic110 are first imported from the cytosol into the chloroplast stroma, and subsequently reinserted from the stroma into the inner membrane. However, the mechanism of reinsertion remains unclear. Here we show that Tic40 itself is involved in this reinsertion process. When precursors of either Tic40 or a Tic110 C-terminal truncate, tpTic110-Tic110N, were imported into chloroplasts isolated from a tic40-null mutant, soluble Tic40 and Tic110N intermediates accumulated in the stroma of tic40-mutant chloroplasts, due to a slower rate of reinsertion. We further show that a larger quantity of soluble Tic21 intermediates also accumulated in the stroma of tic40-mutant chloroplasts. In contrast, inner-membrane insertion of the triose-phosphate/phosphate translocator was not affected by the tic40 mutation. Our data suggest that multiple pathways exist for the insertion of chloroplast inner-membrane proteins.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Cloroplastos/metabolismo , Proteínas de Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Membranas Intracelulares/metabolismo , Proteínas de Membrana/genética , Chaperonas Moleculares/genética , Dados de Sequência Molecular , Mutação , Biossíntese de Proteínas , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Transporte Proteico , RNA de Plantas/genética
11.
FEBS Lett ; 581(12): 2290-300, 2007 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-17481610

RESUMO

In higher plants, two types of nitrate transporters, NRT1 and NRT2, have been identified. In Arabidopsis, there are 53 NRT1 genes and 7 NRT2 genes. NRT2 are high-affinity nitrate transporters, while most members of the NRT1 family are low-affinity nitrate transporters. The exception is CHL1 (AtNRT1.1), which is a dual-affinity nitrate transporter, its mode of action being switched by phosphorylation and dephosphorylation of threonine 101. Two of the NRT1 genes, CHL1 and AtNRT1.2, and two of the NRT2 genes, AtNRT2.1 and AtNRT2.2, are known to be involved in nitrate uptake. In addition, AtNRT1.4 is required for petiole nitrate storage. On the other hand, some members of the NRT1 family are dipeptide transporters, called PTRs, which transport a broad spectrum of di/tripeptides. In barley, HvPTR1, expressed in the plasma membrane of scutellar epithelial cells, is involved in mobilizing peptides, produced by hydrolysis of endosperm storage protein, to the developing embryo. In higher plants, there is another family of peptide transporters, called oligopeptide transporters (OPTs), which transport tetra/pentapeptides. In addition, some OPTs transport GSH, GSSH, GSH conjugates, phytochelatins, and metals.


Assuntos
Proteínas de Transporte de Ânions/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Proteínas de Transporte de Ânions/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Expressão Gênica , Genes de Plantas , Glutationa/metabolismo , Cinética , Proteínas de Membrana Transportadoras/genética , Transportadores de Nitrato , Filogenia , Fitoquelatinas , Proteínas de Plantas/genética , Plantas/genética , Distribuição Tecidual
12.
Plant Cell Physiol ; 45(12): 1759-67, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15557296

RESUMO

Accumulation of class I small heat shock proteins (sHSPs) is induced by the proline analog, azetidine-2-carboxylic acid (Aze) in soybean seedlings to a level similar to that induced by exposure to 40 degrees C. However, only the treatment with 10 mM Aze for 6 h and subsequently with 10 mM proline for 24 h protected the seedlings from damage during subsequent exposure to 45 degrees C as assessed by 2,3,5-triphenyltetrazolium chloride (TTC) staining. A chaperone activity assay showed that the purified class I sHSPs induced by Aze were functional in vitro and protected proteins from thermal denaturation. Amino acid composition analysis indicated that Aze was not incorporated into de novo synthesized class I sHSPs. Accumulation of class I sHSPs in the soluble post-ribosomal supernatant fraction was found to be important for acquisition of thermotolerance. We suggest that both the accumulation of class I sHSPs and their presence in the soluble fraction are important for establishment of thermotolerance.


Assuntos
Azetidinas/farmacologia , Proteínas de Choque Térmico/metabolismo , Resposta ao Choque Térmico/fisiologia , Plântula/metabolismo , Sequência de Aminoácidos/fisiologia , Azetidinas/metabolismo , Proteínas de Choque Térmico/efeitos dos fármacos , Resposta ao Choque Térmico/efeitos dos fármacos , Imuno-Histoquímica , Microscopia Eletrônica de Transmissão , Chaperonas Moleculares/efeitos dos fármacos , Chaperonas Moleculares/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Raízes de Plantas/ultraestrutura , Prolina/metabolismo , Prolina/farmacologia , Desnaturação Proteica/efeitos dos fármacos , Desnaturação Proteica/fisiologia , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , /crescimento & desenvolvimento
13.
Plant Cell Physiol ; 45(9): 1139-48, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15509836

RESUMO

Unlike nitrate uptake of plant roots, less is known at the molecular level about how nitrate is distributed in various plant tissues. In the present study, characterization of the nitrate transporter, AtNRT1:4, revealed a special role of petiole in nitrate homeostasis. Electrophysiological studies using Xenopus oocytes showed that AtNRT1:4 was a low-affinity nitrate transporter. Whole-mount in situ hybridization and RT-PCR demonstrated that AtNRT1:4 was expressed in the leaf petiole. In the wild type, the leaf petiole had low nitrate reductase activity, but a high nitrate content, indicating that it is the storage site for nitrate, whereas, in the atnrt1:4 mutant, the petiole nitrate content was reduced to 50-64% of the wild-type level. Moreover, atnrt1:4 mutant leaves were wider than wild-type leaves. This study revealed a critical role of AtNRT1:4 in regulating leaf nitrate homeostasis, and the deficiency of AtNRT1:4 can alter leaf development.


Assuntos
Proteínas de Transporte de Ânions/fisiologia , Mutação , Nitratos/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/fisiologia , Proteínas de Transporte de Ânions/genética , Arabidopsis/metabolismo , Sequência de Bases , Primers do DNA , Hibridização In Situ , Proteínas de Plantas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...